Planetary probe into giant planets
what will we learn ?
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The life of a giant planet
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Ratic to Solar

Known elemental abundances in gas giants
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See Atreya et al. 2003, Gautier et al. 1995
Solar reference; Grevesse & Sauval 2002



Helium and Neon as a test for high pressure equation of state
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Helium and Neon as a test for high pressure equation of state
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Ab-inito equation of state predicts the formation
of helium droplets enriched in neon.

Neon and helium depletion in Jupiter confirm
this behavior.

The actual high luminosity of Saturn could be
explained by this helium demixing.



Helium and Neon as a test for high pressure equation of state
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C,N,O as a proxy for the heavy elements contents of the envelope
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Temperature (1000 K)

C,N,O as a proxy for the heavy elements contents of the envelope
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Heavy element content influence the
evolution of the planet

Core erosion & inhomogeneous
interior might influence the
measured enrichment
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C,N,O as a proxy for the heavy elements contents of the envelope
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,. No solutions for a three homogeneous layers model for Uranus and
Neptune.



C,N,O as a proxy for the heavy elements contents of the envelope
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— By measuring C,N,O abundances in our giant
planets we will understand better the repartition of
heavy elements and the mixing in their interior.
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Noble gases as a proxy for the accretion mechanism 1n the solar system
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Noble gases enrichment : three possible scenarios

* Noble gases are trapped 1n clathrates (Gautier 2001) — cold disk
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Noble gases enrichment : three possible scenarios

* Noble gases are trapped 1n clathrates (Gautier 2001) — cold disk

* Noble gases are concentrated in the inner disk by grain migration and
later accreted as gas (Guillot & Hueso 2004) — warm disk
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But further away it is cold enough
and they should condense in grains.



Noble gases enrichment : three possible scenarios

* Noble gases are trapped 1n clathrates (Gautier 2001) — cold disk

* Noble gases are concentrated in the inner disk by grain migration and
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Noble gases enrichment : three possible scenarios

* Noble gases are trapped 1n clathrates (Gautier 2001) — cold disk

* Noble gases are concentrated in the inner disk by grain migration and
later accreted as gas (Guillot & Hueso 2004) — warm disk

* Noble gases are accreted as solids in a very cold disk depleted in
water. (Mousis 2012) — very cold disk
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Noble gases enrichment : three possible scenarios

* Noble gases are trapped 1n clathrates (Gautier 2001

* Noble gases are concentrated in the inner dis eradn]oration and
later accreted as gas (Guillot & Hueso 2004 @
* Noble gases are accretedas-selids in a very cold disk depleted in

water. (Mousis 2012) € very cold disk
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Temperature 1n the solar nebulae at 5 AU makes the
difference between these models.
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Noble gases enrichment : three possible scenarios
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In-situ measurements on Saturn will allow us to
—»  differentiate between the scenarios and learn more
about the conditions prevailing in the solar nebulae.



A lot of other interesting measurements

Species Consequence
He Determine extent of helium sedimentation in Saturn’s interior.
Crucial for accurate understanding of the thermal evolutions
of Saturn and Jupiter
Ne Test prediction of Ne capture in He droplets. Refine H-He
phase separation diagram
CH,4 Fine determination crucial to understand the formation of the planet
NH; NH4SH Key to decide between models of planetesimal delivery and planet
formation. Important for Saturn’s meteorology
H»S NH,SH Key for planetesimal delivery, with possibility that the abundance
is linked to that of rocks deep nside. Important for Saturn’s meteorology
H>,O (by radiometry); Key to understand the planet’s structure, formation,
and meteorology
Ar, Kr, Xe Key to decide between models of planetesimal delivery and planet

CO, PH;, AsH;, GﬂHq_
D/H

12(:‘1.113(:
14N}'I15N

“Ne/’Ne
*®A1**Ar Kr, Xe isotopes

formation. Link with the compositions of the Sun and protosolar disk

Disequilibrium species are important to understand convection in Saturn’s
deep atmosphere. Help to further test planetesimal delivery models

Test models that predict it should be similar to Jupiter and to the
protosolar value

Test models that predict value similar to Earth

Important to understand whether N was delivered as N or as NH;.
Test models of planetesimals delivery

Origin of gas, Test evaporation processes in the early solar system

Origin of gas, Test evaporation processes of these gases in planetesimals

Marty et al. 2009



What will we learn before the next probe 1n giant planets ?
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With 779 confirmed planets and thousands of candidates,
we can now study planets as a class of objects.



What will we learn before the next probe 1n giant planets ?
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Statistical study of gas giant exoplanets will enlighten us
about the general mechanism to form planets.
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What will we learn before the next probe in giant planets ?

In hot-Jupiters we can see molecules that
are hidden in our giant planets :

Water, methane, carbon monoxide,
sodium, potassium, titanium and
vanadium oxide, atomic hydrogen ...
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As the measurements become more

precise,

we will get clues on the

formation of giant planets in general.



All giant planets should eventually be probed !
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» It 1s only by probing our own giant planets that we will
discover the specific history of our solar system.
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